
Unsteady and transient flow of 
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A. R. D. Thorley and C. H. Tiley* 

The mathematical modelling of highly compressible unsteady flows has been of interest for 
some years. In order to obtain tractable solutions of the governing equations, investigators 
have made various simplifying assumptions such as presuming isothermal or isentropic flow 
of ideal gases, etc. The present review, with dense phase gas transmission systems of 
particular interest, briefly develops the basic equations without such assumptions and 
includes the effects of wall friction and heat transfer. After re-expressing the equations in 
terms of the measurable quantities of pressure, temperature and velocity, previously 
published work is reviewed for their solution. Relevant experimental work is somewhat 
limited but contributions from 20 references are included. 
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Introduction 

The scale and complexity of modern gas recovery and pipeline 
distribution systems is such that they seldom, if ever, operate 
under steady flow conditions. Their design and simulation 
should always be on the premise that the flow is unsteady. 

For  analysis purposes, such flow situations may be divided 
into two main categories: slow and rapid transients. Slow 
transients are those fluctuations in pressure and flow caused by 
changes in demand: for example, on a daily cycle. They are 
mainly concerned with the packing and unpacking of gas in the 
system. 

Rapid transients are those caused by a linebreak (pipe 
rupture), compressor failure, rapid shut-down or start-up of a 
system. The detection of linebreaks can be important both from 
an economic and a safety point of view. Although a linebreak is 
unlikely to occur through technical reasons, the risk of 
accidental pipe rupture cannot be ignored. The potential hazard 
arising from such a situation can be estimated by examining 
pipeline flow and pressure upstream of a suddenly open pipe. 

Basic equations for homogeneous 
compressible f low 

Since the application being considered is highly compressible 
flow in a pipeline, a control volume of length dx and an area 
equal to that of the pipeline is defined. Applying the laws of 
conservation of mass, of linear momentum and of energy leads 
to the basic equations for homogeneous, geometrically one- 
dimensional flow. This initial assumption is examined in detail 
elsewhere 1, but briefly it may be stated that for high Reynolds 
number flows (as in gas transmission lines) the one-dimensional 
assumption has been shown to be very good for steady and 
slowly varying flows. There may, however, be some slight 
deviations for large, rapid disturbances. 

In terms of partial differential equations, the conservation 
laws may be expressed as follows: 
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for mass 

~P 0 u 0 ~-+~x ( ; )= (1) 

for linear momentum 

Ou Op Ou W pgsinO (2) 
P~t+~x+PU Ox A 

for energy 

Oh Oh Op Op fl+Wu 
PTt + P " ~ - g - " ~  = A (3) 

Eqs (1) to (3) may be rewritten 2 with pressure, velocity and 
temperature as the dependent variables by using the equation of 
state for a real gas: 

P=zpRT 

and the thermodynamic identity given by Zemanskya: 

The following set of hyperbolic equations is produced: 

2 f T/Oz'~ ) f l + W u  
OP OP 20u a, i l + z ~ ) e ~  (4) & +U~x+Pa" Ox-CpT A 

Ou Ou 1 O P W 
+U~x +pOx- Ap gsinO (5) 

OT or a2~ f T I/ Oz'~ ) Ou 

a• ~1 ,(Oz'] ~"+Wu 
- C ~  [ - z  \ ~ J r  j A (6) 

The complete derivation of the above equations is given in the 
Appendix. 

Methods of solution 

Several different methods of solution for the general equations 
have been developed, and the choice is partly dependent upon 
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the individual requirements of the system under investigation. 
The more popular methods of solutions used for transient 

pipeline analysis are summarized below. 

The method of characteristics 

The method of characteristics simplifies the hyperbolic 
equations describing the flow (Eqs (4), (5) and (6)) by converting 
them to the natural coordinates of the system, otherwise known 
as the characteristics. The resulting characteristic equations 
obtained are solved numerically on either a grid of 
characteristics or on a rectangular coordinate grid. 

The equations describing the flow may be written in matrix 
form thus: 

U , + A U ~ + d = O  (7) 

where subscripts t and x denote partial derivatives with respect 
to time and distance, respectively, and where 

P 

A =  u ~,a~ 0 

1/p u 0 

u 
0 ' 1 + 7  c=~- e 

dx 
along ~ -  = u: 

T [ S z \  )dP 
1 1 + - -  I l ~ - -  - -  

pCp z \c3TJp) dt 

dT l (Q + Wu~= 
-1 dt C ~ \ ~ /  0 (8) 

dx 
along ~t  =u+a~:  

1 de_t du a s { l+TfP.z~ ~(fft+Wu~ 
pa, dt dt p C p T  z \ ~ / p J \ ~ /  

W 
+ - - + g  sin 0=  0 (9) 

Ap 

dx 
along dt = u - a~: 

1 dP du a~ / T /~z \  ) /~+Wu~ 
pa, dt ~-dt +p~TpT~l + z ~ c ~ ) , ) ~ )  

W 
+ + g s i n 0 = 0  (10) 

Ap 

The method of solving these characteristic equations on a grid 
of characteristics is known as the natural method qf 
characteristics. 

For two dependent variables (as in the case of isothermal 
flow) the characteristic equations may be given by 

d =  
CpT ( p 

W 
+ g sin 0 

Ap 

The eigenvalues 2 of A give the characteristic directions, which 
are 

/~I=U 

) ,2=u-l-as  

The characteristic equations are as follows: 

du 1 dP W 
~ + - ~  dt + ~ + g  sinO=O 

dx 
along dt~ = u _+ a (II)  

A first-order finite difference approximation to the C + 
characteristic gives (referring to the notation of Fig 1) 

1 
(UB--UA1)+- (PB--PAI) 

paA1 

+(~+gsin  O)Ax(tB--tA1)=O 

and 

(XB--XAI)=(RA1 +OA1)(tB--/A1) 

(12) 

(131 

N o t a t i o n  

A Cross-sectional area of pipe, m 2 
as Isentropic wavespeed, m/s 
Cp Specific heat at constant pressure, J/kg K 
C~, Specific heat at constant volume, J/kg K 
d Diameter of pipe, m 
e Specific internal energy, J/kg 
f Darcy friction factor 
(4 Gravitational acceleration, m/s 2 
h Specific enthalpy, J/kg 
i,j Rectangular coordinates used in explicit finite 

difference methods 
P Pressure, Pa 
Pr Prandtl number 
Q Heat transfer rate per unit volume, J/(mas) 

R Specific gas constant, J/kg 
Re Reynolds number 
s Specific entropy, J/(kg K) 
St Stanton number 
T Temperature of the gas, K 
t Time, s 
u Velocity of the gas, m/s 
W Frictional force per unit length of pipe, N/m 
x Distance along the pipe, m 
x' Thermodynamic quality or dryness fraction 
z Gas compressibility factor 
0 Angle of inclination of pipe to the horizontal, 

radian 
p Mean density of the gas, kg/m 3 

Heat flow into the pipe per unit length of pipe and 
per unit time, J/(m s) 

4 Heat and Fluid Flow 
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Figure 1 Linear characteristics on an x-t plane 

Similarly for the C characteristics: 

1 
(ua -  UAE)-- (PB-- PA2) 

paa2 

+( W+ g sin O) A2(tB-- t A2)= O (14) 

and 

(XB-- XA2)= (UA1 -- aA2)(tB --tA2) (15) 

Eqs (12) to (15) can be solved simultaneously 4 for the four 
unknowns (PB, uB, XB, tB). 

Instead of linearizing the characteristic grid, a second-order 
approximation may be used, as expressed by the trapezoidal 
rule formula. This results in a set of nonlinear equations which 
may be solved by iteration. Higher-order methods have been 
constructed 5 but because the number of points to be considered 
grows exponentially with distance from the line of known values 
I (see Fig 2), the range of applicability is limited. 

The main advantage of the natural method of characteristics 
is that discontinuities can be handled and that large time steps 
are possible since they are not restricted by a stability criterion. 
However, this method does have two main disadvantages when 
dealing with rapid gas transients. The first is that if more than 
two dependent variables are required to describe the system 
then the complexity of the computation increases. The second 
major drawback is that if the solutions of the dependent 
variables are required at fixed time intervals, then two- 
dimensional interpolation in the characteristic net is required, 
and this can be very complicated. To overcome this second 
disadvantage, the mesh method of characteristics was developed 
which solves the characteristic equations on values for the 
dependent variables at specified time-distance coordinates. 

A first-order method 6 assumes that the sections of the 
characteristics being considered are straight lines. This 
assumption is acceptable provided that the time steps, At, are 
sufficiently small. The interpolations are normally linear in the 
space domain. For  larger time steps, discretization errors may 
be introduced if the characteristic lines are assumed to be 
straight. To overcome this, a second-order approximation is 
necessary which uses arcs of parabolas to model the 
characteristics. 

An extension of this method for calculating three dependent 
variables, as required for transient non-isothermal gas flow, has 
also been successfully evolved v 9. 

Lister ~° describes a second-order method which obtains a 
higher degree of accuracy for smooth functions by using 
quadratic instead.of linear interpolation. However, since there 
are three simultaneous equations to solve at each iterative step, 
the computing time would be increased. This method also 
causes comparatively large overshoot resulting from 
discontinuities. 

Another way of increasing the accuracy of the solution is to 
use extrapolation procedures 9'1t which enable the elimination 
of higher-order errors (again at the expense of increased 
computing time). 

Whereas the natural method of characteristics is 
unconditionally stable, the mesh method of characteristics is 
only conditionally stable. The stability criterion, due to 
Courant-Friedrichs-Levy, is that the domain of dependence of 
the exact solution is contained within the domain of dependence 
of the numerical solution 12. In terms of mesh dimensions: 

At 1 - -~< 
6x I"l+as 

If the Courant number ct is defined by 

~'=(lul+"s)~ 
then this stability criterion can be given by 

ct%l 

There are, however, certain circumstances in which adherence 
to the stability criterion could cause numerical dispersion of the 
waves. For example, problems arise when the absolute gradients 
of the C + and C-  characteristics differ significantly from each 
other (as would occur with high Mach numbers) or when the 
wavespeed varies significantly along the length of the pipe. In 
order to overcome such difficulties, Vardy ~3 has proposed a 
method in which a variable mesh size is used. He concludes that 
in certain circumstances, such as high Mach number flows, 
increased accuracy and/or reduced computing costs can be 
obtained if At/Ax grid ratios in excess of those permitted by the 
Courant-Friedrichs Levy criterion are used, provided that the 
flow parameters at the base of the characteristic lines are still 
found by interpolation, rather than extrapolation. 

Another method of relaxing the stability criterion is by using 
an inertial multiplier ~ as conceived by Yow ~4. By assuming that 
the inertial effect in a natural gas system is insignificant, Yow 
multiplied the term (#u/#t) by ct 2. This increased the time step by 
a factor cc The choice of~ (not to be confused with the Courant 
number ct) is dependent on the severity of the transient being 
examined and the accuracy required. Wylie and Streeter ~5 
illustrate that with a 5 % error margin, the time step may be 
increased by a factor of 6 for a rapid transient or by a factor of 40 
for a slow transient. 

With the mesh method of characteristics, discontinuities can 
be handled and boundary conditions are properly posed. It is a 
relatively accurate method of solution which can be readily 

\\, F,//~ 
E2 C *  

/,';Y / \ 
/ .... , / & /% /\, ,I/ 

AI 

Figure 2 

Distance 

Two-dimensional natural grid of characteristics 
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adapted to solve for the three dependent variables required for 
the analysis of nonisothermal, transient gas flow. It is simple to 
program on a computer, although the main disadvantage is that 
it is comparatively slow because the time steps are restricted by a 
stability criterion. 

Explicit f inite dif ference methods 

There are many different explicit finite difference methods, 
ranging from the single-step, first-order schemes, such as the 
method of Lax (p 85 of Ref 16), to the fourth-order, four-step 
method of Abarbanel, Gottlieb and Turke117. Second-order 
accuracy is normally regarded as sufficient for the analysis of gas 
transients. Niessner is gives details of higher-order methods. 

Explicit finite difference methods integrate the basic partial 
differential equations by considering the changes in the 
dependent variables (P, u and T) along the directions of the 
independent variables (x and t). This produces the solution 
values at evenly spaced points in the physical plane. A finite 
difference grid is shown in Fig 3. 

To solve the basic equations using an explicit finite difference 
method they should first be written in the 'conservative' form 19 

0 
~ t ( A ) + ~ x ( B ) = C  (16) 

where A, B and C are functions of the dependent variables. 
For the case of transient gas flow in pipes, the three 

conservation equations (Eqs (1), (2) and (3)) may be written 
thus: 

MASS 

c~ 0 
(p) + ~ (pu) = 0 (17) 

MOMENTUM 

0 c~ W 
Ot (pu) + ~x (pu2 + P) = ---A - Pg sin 0 (18) 

ENERGY 

U 2 

- UJ + xx[(h+ )pu]= -pugslnO (19, 0t 

The simplest explicit finite difference method is the forward 
Euler method. Applying this method to Eq (16) (assuming that 
C is equal to zero) produces the following approximation: 

At 
A..j+ 1) = A(ia)- 2Ax (B,+ t , j ) -  B._  1,j)) (20) 

This method is unconditionally unstable, and to overcome 

Figure 3 
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this a damping term must be added to produce 

At 
A(i,j+ 1 ) =  A(i , j ) -~x (B.+ ia)- B._ 1a)) 

(D 
+ ~ (A.+ 1.j) - 2A.,j) + A~_ ~,j~) (21) 

where 0 < o ~< 2 and is the natural frequency of the oscillations. 
This is known as the 'Method of Lax' and is a single-step, first- 
order method. 

In general, a first-order approximation is not sufficiently 
accurate for modelling gas transients in pipelines, and so 
attention is focused on the second-order methods. A single-step 
second-order finite difference method is the 'Method of Lax- 
Wendroff '19 which can be written as 

At 
A(i,j+ 1 ) =  A(i,j)--2~X (B(i+ l , j ) -  B._  1,j)) 

1 / A t \ 2 ( /  8B c~B \ 

8B c3B 

This method has the disadvantage that additional computing 
time is required to evaluate ~B/~A as well as B at each step. To 
avoid the necessity of this calculation there have been numerous 
two-step methods developed. Probably the best-known of these 
is the 'Lax-Wendroff two-step'. This method was used to 
simulate dynamic gas flows in networks 2° and to simulate 
pressure wave propagation in two-phase bubbly air-water 
mixtures 21. Taking Eq (16), the La~Wendrof f  two-step 
approximation may be described as follows: 

First step 

1 
A(i+ 1/2,j+ 1 , / 2 )=2  [A~i+ 1,j) + A(i.j)] 

1 At 
2 2Ax [Bti+ l , j ) -  BO,j)] 

At 
+ ~  Ec(i+ 1,j)+ cti,j)] + O(Ax 2, At) (23) 

Second step 

At 
A(i,j+ 1)= A . , j ) -  ~xx [B.+ 1/2j+ 1/2)- B(i-1/2,j+ 1/2)] 

+At[Cti+I/2,j+I/2)+C(i_I/2,j+I/2)]+O(Ax2,At 2) (24) 

where O(Ax 2, At/) is the 'truncation' or 'rounding' error. On 
close examination of these equations, it can be seen that in the. 
first step the values at all the points at time t = j  + ½ can be found. 
These values are then used in the second step to derive the values 
at time t = j  + 1. 

The MacCormack method 22 is also a second-order two-step 
method. This is described by 

First step 

At 
A(ij+ 1): A(ij)--~xx [B(i+ 1,j)- B..j)] 

Second step 

1 
A(i,j + 1))= ~[ A(i,j) + A-(i,j * l )] 

At 
2Ax [B.,j+ 1)-  B(i- 1,j+ u] 

Another second-order method is the 'leap-frog' method 2.. 
This method involves three time levels within one time step, and 
the approximation for Eq (16) (assuming that C is equal to zero) 

6 Heat and Fluid Flow 
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may be written 

At 
A, , j+ l~ = A , , j _  l~-Axx [B,+ 1.j~- B , _  l,~] (25) 

This method shows no amplitude error and requires only one 
evaluation of the value for B at each node point. However, when 
C in Eq (16) is not equal to zero, this method becomes 
unconditionally unstable, and to regain stability the 
calculations become more complicated. 

A major drawback of the explicit finite difference methods is 
that, at best, they are only conditionally stable. For most cases 
the stability criterion is the same as that defined for the mesh 
method of characteristics, ie 

At 1 - -~< 
Ax lul+a~ 

Since the stability criterion restricts the size of time step which 
may be used, these methods require a large amount of computer 
time and are hence not suitable for the analysis of large systems 
or for the evaluation of unsteady flows over long periods of time. 
They are, however, easy to program and need comparatively 
little computer memory space since they solve the equations 
sequentially rather than simultaneously. 

For  systems in which a shock forms, an explicit finite 
difference method would be suitable since no care needs to be 
taken over the location of the shocks. To overcome the 
considerable overshoot and oscillatory systems set up by the 
shock when using a method of higher than first order, a 
smoothing parameter is used. However, extreme care must be 
taken when using such numerical damping since it can tend to 
smoothen the transient peaks. 

A disadvantage of these methods is their inability to solve for 
the boundary conditions naturally. In some cases the boundary 
conditions are solved using the method of characteristics but the 
calculations may be complicated for networks with many 
branches. 

a 

b 

b, 1 c, 

b, 1 

c, 0 

C, 

d, 1 

d, 1 
| 

b~O c,O d~O 

d, 1 

d,O 

C, 

c,O 

C 
b, 1 c, 1 e, 1 

t • 
d, 

Impl ic i t  f in i te di f ference methods 

Implicit finite difference methods have the advantage over the 
explicit methods of being unconditionally stable. This implies 
that the maximum practical time step is limited by the rate of 
change of the variables imposed at the boundary conditions 
rather than by a limitation required by a stability criterion. 
Some of the implicit finite difference methods that have been 
used in the solution of fluid transient problems are detailed 
below. The notation used for each method is that illustrated in 
Fig 4. 

Fully implicit method 

This method is a backward difference method (whereas the 
explicit finite difference schemes are forward difference 
methods). For  the general equation in conservative form (Eq 
(16)) the fully implicit finite difference approximation for the 

J[ 
0 I 

a 

Figure 4 An x-t grid for 

I X 

C 

Position 

illustrating implicit finite difference 
methods. (Property ~ at point X is denoted by q~cl.) 

b, 0 d,O 

Negative X Positive ;k 

d 
Figure5 Definitionsketchesforfullyimplicitmethods: (a) thefully 
implicit method; (b) the Crank-Nicolson method; (c) the centred 
difference method; (d) the characteristic finite difference method 

point (c, 1) may be written 

A~I - A~o Bal - Bbl 
- -  -~ Col ( 2 6 )  

At 2Ax 

The node points used in this approximation are shown in Fig 
5(a). 

The Crank-Nicolson method 

Forsythe and Wasow 16 reported that the implicit difference 
methods 'seem to have been used for the first time by Crank and 
Nicolson (1947)'. What is now known as the Crank-Nicolson 
method is a central difference solution of high-order accuracy. 
This solution is, however, prone to oscillate about the true 
solution for sudden changes in forcing function. The Crank-  
Nicolson approximation for Eq (16) at the point (c, 1) is 

Acl - -  Ac0 (Bd0 - -  Bb0 ) + (Bdl - -  Bbl  ) 
A ~ -  -¢ 4Ax Col (27) 

Fig 5(b) gives the nodal plan for this method. Guy 23 and 
Heath and Blunt 24 used the Crank-Nicolson method to solve 
the conservation of mass and the conservation of momentum 
equations for slow transients in isothermal gas flow. Both 
research teams neglected the elevation term pg sin 0) and the 
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differential of kinetic energy with distance (O/Ox(pu2)) in the 
momentum equation (Eq (18)). 

The justification for these omissions is that the relative orders 
of magnitude of the terms O/Ox(pu2):c~/c~t(pu):pP/Ox are 
approximately 0.01:0.1:1 so it is reasonable to neglect the 
nonlinear term c~/?~x(pu 2). The elevation term is often considered 
to be insignificant but is retained here for completeness. 

This method of solution was found to be much simpler than 
those proposed by Wilkinson et a125. It was easier to program, 
computed much faster and could be readily extended to pipeline 
networks of any size. 

The centred difference method 
Wylie et a126 used the centred difference method to solve for 
isothermal gas transients in a network. In this method the 
partial derivatives are calculated for sections of the pipeline 
rather than node points. For section c-d in Fig 4 the centred 
difference approximation for Eq (16) is 

(Adi -Ad0)+(Acl-Ac0)  (Ball-Bcl)+(Bdo-Bco) + 
At Ax 

Col + C¢o + Cdl + Cd0 
- (28) 

2 

The node points used in this approximation are shown in Fig 
5(c). 

Although this method does require a large amount of 
computer storage to handle the coefficient matrix and lengthy 
execution times these major disadvantages can be overcome by 
using a sparse matrix method. 

A development of this method incorporating upstream 
weighting was used by Taylor 27. This weighted finite difference 
approximation for Eq (16) at points P as shown in Fig 6 is given 
by 

0(Adl - Ado ) + (1 - 0)(A¢l - Aco) 

At 

~b(Baj - Bcl) + (1 - 4))(Bdo -- S~o) 
Ax 

=(1 - ~b){0Cd0 + (1 --0)Co0} +(o{OCd, +(1 - 0)C~1} (29) 

where 0 and 4, are the weighting factors 

0~<0~< 1, 0~<~<I  

Characteristic finite difference method 
The characteristic finite difference method can be used 2s'29 to 
simulate transient homogeneous two-phase flow. It is so called 
because instead of approximating the conservative form of the 
basic equations (Eq (16)) it uses the characteristic form of the 
equations. The characteristic form may be written 

Ou D (30) T +AT ?.,x 

where T is the transformation matrix, u is the column vector of 
the dependent variables, and A is the diagonal matrix of the 
characteristic directions. 

The difference approximations at point (c, 1) of Fig 4 for Eq 
(30) may be written 

T fu¢ ' -u~°~+A T fUcl--Ubl~--D 
A, ) ¢o t (31) 

/Uci - U¢o\ / U d i  - -  u¢l \ +AcoT<o{ )--Oco (32) 

Eq (31) is used for the positive characteristic directions, and 
Eq (32) is used for the negative characteristic directions. The 
relevant node points are shown in Fig 5(d). This method is as 
similar as possible to the method of characteristics but is not 
restricted by a stability criterion. 

General review of implicit finite difference methods 
The four methods that have been described are the implicit finite 
difference methods most commonly used for gas transient 
analysis, although there are others such as the explicit-implicit 
methods 3° used to solve for pressure transients in bubbly two- 
phase mixtures or the three time level implicit scheme discussed 
by Osiadacz 31 . 

The major advantage of using an implicit finite difference 
method is that they are unconditionally stable and hence impose 
no restrictions on the maximum allowable time step. These 
methods do, however, require the solution of a set of nonlinear 
simultaneous equations (usually by Newton-Raphson 
linearization) at each time step. For a complex gas network the 
matrix becomes quite large. Other disadvantages of these 
methods of solution are that they can yield unsatisfactory results 
for sharp transients and some implicit methods have been 
known to produce erratic results during the imposition of some 
types of boundary condition. 

1 

1 t 
v- 

0 - ~  __ 

03 AX 

01 AX 

0 2 AX 

~1 A t  

¢3 At 

Ax 

¢2 At 

Figure 6 Grid section 
approximations 

Position 

illustrating weighted finite difference 

Finite element analysis 

Finite element methods have not been widely used for gas 
transients since the procedure is lengthy and tedious, and 
computing time and storage requirements are high. However, 
they do offer some advantages over the finite difference methods 
in that the element size, shape and distribution are relatively 
flexible so that nonuniform internal distribution of nodal points 
is possible. They can also handle some boundary conditions 
better than finite difference methods. 

The various steps involved in the finite element method of 
solution are as follows. 

(i) Subdivision of the pipeline into subregions or finite 
elements-- the size, shape and distribution must be decided. 

(ii) Selection of the shape functions--the dependent variables 
may be approximated by different shape functions in each 
element. The shape functions are usually polynomials, the 
simplest of which is the linear or chapeau representation. 
The higher order polynomials yield more accurate 
solutions unless the solution contains discontinuities, in 
which case this does not always hold true. 

(iii) Derivation of element behaviour--a  relationship is 
obtained for a typical element, and from this the behaviour 
of all the individual elements may be computed. 

8 Heat and Fluid Flow 
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(iv) Application of the boundary condit ions--the boundary 
conditions are applied by modifying the overall algebraic 
equations. 

(v) Solution of the overall equations--these equations, 
especially when nonlinear, are usually solved iteratively. 

Rachford and Dupont 32 used a Galerkin finite element 
method with two-dimensional elements in space time based on 
Hermite Cubic polynomials to simulate isothermal transient gas 
flow. The Galerkin method is a two-step method which reduces 
the partial differential equations to ordinary differential 
equations, but it is generally unpopular for this type of analysis 
because of its lengthy execution. 

In the moving finite element method of solution 33, 34 ordinary 
differential equations are obtained from the basic partial 
differential equations and then solved using a simple explicit 
finite difference approach, using one-dimensional elements in 
space with linear differences in the time domain. The major 
drawbacks with this method of solution are that care is needed 
in the treatment of the boundary conditions and that it is very 
complicated to program. 

The f lux difference splitting schemes 

Recent developments in the solution of the basic equations for 
transient gas flow have included 

(i) 2 formulation, proposed by Moretti 35 in 1979; 
(ii) flux-vector splitting, proposed by Steger and Warming 36 in 

1981; 
(iii) flux-difference splitting, developed by various authors 

during the last five years from Godunov's 37 work of 1959. 

The 2 formulation scheme has the major drawback that shock 
waves have to be treated explicitly. Mulpuru aa showed that the 
flux-vector splitting techniques of first order are very diffusive 
whereas higher-order methods generate post shock oscillations. 
The problem can, however, be overcome by using a nonlinear 
weighting procedure a9 which produces a hybrid scheme which 
can be extended to higher spatial dimensions through time 
splitting. 

The flux-difference splitting schemes can correctly capture the 
shock waves and provide criteria to discriminate the correct 
information carried by propagating waves. The difference in flux 
between two adjacent node points is split into terms that will 
affect the flow evolution at points either side of the section under 
investigation. It is assumed that uniform flow occurs at each 
node points and over the cell extending for one half grid interval 
each side of the node point. A discontinuity generally separates 
two neighbouring cells in the middle of the interval, and the 
evolution in time of this discontinuity provides the criteria for 
splitting the flux difference over an interval into terms associated 
with waves that propagate up or down the pipe. Roe 4° describes 
this method of solution for the basic equations with the source 
terms omitted, and Pandolfi 4~ extends the analysis to 
hyperbolic equations. 

With reference to the elemental section shown in Fig 7, let 

Bi+ 1 - -  Bi = AiB 

The term AIB is known as the flux difference, and the 
corresponding term A~BAt/Ax can be interpreted as the 
contribution of the interval (x~+ ~ - xi) to the variation in time, 
from t o to ta, of the vector A. In general the waves will travel in 
both directions in the pipeline and so it is necessary to split the 
term A~B into parts that will affect the points upstream or 
downstream of the interval under consideration. 

At time t o let there be uniform flow Bi in the interval 
(Xi+ 1 / 2  - -  Xi) and uniform flow Bi+ 1 in the interval 
(xi+ ~ -x i+  i/2)- A discontinuity (AiA and/or A~B) separates the 
two half intervals at the centre (xi+ ~/2). The evolution in time of 
this discontinuity is the solution of a Riemann problem. 

Since for this problem there will be three waves corresponding 
to the three characteristic directions ( u + a , u , u - a )  the 

Section 7 

tl 

to 
AX 

Xi Xi+l 

Position 

Elemental section for flux difference splitting 

difference of flux through the initial discontinuity A~B is split 
into three terms: 

AiB = (AIB)I + (AiB) 2 + (AiB) 3 

P. L. Roe 4° reported that the exact solution of this Riemann 
problem is not essential to obtain good numerical results, 
especially considering the large truncation errors that would be 
incurred in the iterative process required to obtain the exact 
solution. Instead, the Riemann problem is solved approximately 
to save on computing time, and it is the different ways of 
approximating that identify the different flux-splitting methods. 

Although very good results have been obtained from 
numerical experimentation, these methods do have the basic 
disadvantage that a considerable amount of computer time is 
required to split the flux difference. Furthermore, if a second- 
order method is used for the integration the computational time 
is again increased. Also it has been noted that some inaccuracies 
can develop in cases such as the interaction of shocks. 

F u r t h e r  c o m m e n t s  on  t h e  bas ic  e q u a t i o n s  

The basic equations contain certain terms, such as the friction 
term and the heat transfer term, that require further clarification 
before numerical results can be obtained. 

Friction term 

The friction term, denoted by W in the basic equations, may be 
defined as 'the frictional force per unit length of pipe' opposing 
the flow. Assuming that the minor losses are small compared 
with the distributed losses, the frictional force W for a gas may 
be written 

A ulu I 
W = ~ p f  2 (33) 

where f is the Darcy friction factor. 
Various research teams have used different relationships to 

define the friction factor, and several questions arise, as 
discussed below. 

(i) Can steady flow friction factors be applied to unsteady 
flow? Since, at present, there have been no friction factors 
defined for transient gas flows, it is common practice to use the 
steady flow definitions in lieu. Some time-dependent friction 
factors have been developed for laminar liquid flows 42 44 but 
these would not be suitable for turbulent gas flows. When the 
transient flow is of relatively low frequency and amplitude, there 
is very little error involved in using a steady flow friction factor. 
However, if large, rapid disturbances are occurring, a significant 
error may be incurred. For  this reason, 'tuning' of the friction 
term may be employed when investigating rapid transients. 

(ii) Is it necessary to use a flow-dependent friction factor? The 
friction factor is dependent on pipe roughness and Reynolds 
number, which vary from point to point in gas pipelines. The 
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main consideration is whether the variation in friction factor is 
large enough to justify the additional computation involved. 
Henry 45 states that the friction factor may be determined to 
within 1% in a high pressure pipeline and that variations with 
flow should be considered. Other authors 7'8'23'46, however, all 
claim that at higher Reynolds numbers the friction factor can be 
assumed to be constant, and support their claim with 
experimental data. In practice the basic data for determining the 
friction factor, even for steady flows, will rarely be known within 
a few percent, and a constant friction factor will usually be 
adequate as a first approximation. 

(iii) Does the friction factor need to account for the possibility of  
the liqid phase being present? I f  so, how? In dense gases a certain 
amount of condensation must be expected to occur with 
depressurization. For  such cases, the liquid volume fraction will 
be less than 0.I. The friction factor is strongly dependent on the 
liquid volume fraction and different calculation techniques give 
substantially different results. 

There are two main options for obtaining a value for the 
friction in two-phase flow: 

(a) modify the Reynolds number and roughness terms of the 
Colebrook Equation47; 

(b) include in the expression for friction a multiplier which is 
determined empirically 29'3°'48-5°. 

The preferred method is to include a two-phase friction 
multiplier since this method is relatively simple and has already 
been adapted by various authors for analysing transient flow 
situations. Modifying the Reynolds number and roughness 
terms is more appropriate for steady flow analysis. 

(iv) How can the friction term be approximated when solving the 
basic equations? Frictional loss is responsible for most of the 
change in pressure along a gas transmission pipeline. A 
linearized friction term does not adequately represent this high 
frictional effect in a gas and so a second-order approximation 
such as the trapezoidal rule must be used. 

Heat transfer term 

The heat transfer term f~ may be defined as 'the heat flow into 
the pipe per unit length of pipe and per unit time'. Although it is 
considerably smaller in magnitude than the friction term, it is 
still a necessary inclusion especially when considering long 
distance pipelines. 

Typically, either an isothermal or an adiabatic approach has 
been adopted. For the case of slow transients caused by 
fluctuations in demand, it is often assumed that the gas in the 
pipe has had sufficient time to reach thermal equilibrium with 
constant-temperature surroundings. Similarly, when rapid 
transients are under consideration, it is assumed that the 
pressure changes occur instantaneously, allowing no time for 
heat transfer to take place between the gas in the pipe and the 
surroundings, These are two extreme cases. In reality a certain 
amount of heat transfer will occur between the gas and its 
surroundings, although thermal equilibrium will not always be 
reached. 

Various methods are available for estimating the heat 
transfer, most of which involve modifying a steady flow 
expression. One of the most popular of these methods is the use 
of the Stanton number which may be defined in terms of heat 
transfer rate: 

Qd 
St = 

4pCpu(T w -- To) 

where Q is the heat transfer rate per unit volume, T w is the wall 
temperature, T o is the stagnation temperature. 

Hence, for a circular cross-section pipe: 

fl 
St= 

rtpC pud( Tw - To) 

where t2 is the heat transfer rate per unit length of pipe as defined 
in the basic equations. 

Therefore, 

f~ =rcpCpuStd(T w -- To) 

The Stanton number may initially be found from boundary 
layer theory or taken as a function of the Reynolds and Prandtl 
numbers. For  example, Bakhtar 51 used the relationship 

St(Re °z)(Pr °6) = constant 

However, Issa and Spalding 7 concluded that, as with the 
friction factor, variations in Stanton number with flow rate were 
not sufficient to warrant the additional computation involved. 

Equation of state 

The compressibility factor z and its derivatives with respect to 
pressure and temperature appear in the basic equations. The 
compressibility factor may be read directly from a generalized 
compressibility chart but an alternative method is to use an 
equation of state. This has the advantage that it can be easily 
programmed into a computer and it can also solve for the 
derivatives of the compressibility factor. There is a wide 
selection of equations of state varying in accuracy and 
complexity. However, since the two terms T/z(~z/~T)p and 
P/z(~z/OP)T are usually relatively small, a complex equation of 
state would be uneconomical in terms of computer time. 

R e v i e w  of  e x p e r i m e n t a l  w o r k  on dense gases 
and vapours  

Relevant experimental work that has been carried out over the 
last forty years can be categorized into three types: 

(i) laboratory work using shock tubes, 
(ii) experimentation on full size pipelines, 

(iii) experimentation using pipe networks. 

Each form of investigation has its own advantages and 
disadvantages, and some research teams have used more than 
one type to support their theories. 

Laboratory experiments 

Rapid pressure transients can be modelled using shock tubes by 
rupturing a diaphragm or bursting disc. Edwards and O'Brien 52 
used this method to simulate blowdown in a water-cooled 
power reactor. They heated a water-filled pipe to the required 
temperature and pressure (above saturation conditions) and 
then ruptured a glass bursting disc at the end of the tube. The 
transient pressures and temperatures were measured at seven 
tapping points along the length of the pipe, and transient void 
fraction readings were taken at two of the stations. The end 
thrust exerted by the shock tube was also measured. From their 
results they concluded that the pressure in the shock tube 
initially fell below and, although it recovered slightly, remained 
below the initial saturation value. Also the decompression wave, 
caused by the rupture of the bursting disc, travelled upstream at 
approximately the isentropic speed of sound in the compressed 
liquid phase. 

In 1978, Groves et a153 published some results they had 
obtained for pressure transients in gases. Until that time most of 
the experimental shock tube studies had investigated the 
transient effects with water vapour only and had been focused 
on the low pressure side of the diaphragm. Since Groves et al 
were attempting to simulate a gas pipeline rupture and to 
describe the decompression wave associated with such a 
rupture, they concentrated on the high pressure side of the 
diaphragm and used methane, argon and natural gas as working 
fluids. The results obtained illustrated the variation in 
wavespeed of the decomposition wave with pressure ratio. 
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Discrepancies between experimental and theoretical results 
were accounted for in that the small diameter effects (eg heat 
transfer, partial choking due to boundary layer build-up, and 
successive condensations) were not included in the theoretical 
analysis. 

Issa and Spalding 7 obtained better agreement between their 
theoretical analysis and the experimental shock tube data of 
Williams 54 although they did not compare the theoretical and 
experimental variations of wavespeed with pressure ratio. The 
working fluid was assumed to be a perfect gas in the theoretical 
analysis, but frictional effects and heat transfer were included 
(which in practice weaken a shock wave). 

In the experimental work discussed above, the fluid was 
initially at rest or moving with negligible velocity. Experiments 
performed by Premoli and Hancox 5s differed from other shock 
tube experiments in that the fluid was initially flowing when the 
rupture was initiated and also heat was added during the 
depressurization. Using subcooled pressurized water (steam- 
water) as their working fluid they produced data including 
depressurization rate, mass hold-up and discharge rate. 

Full size pipeline experiments 

Some authors, for example Cheeseman 56, argue that since rapid 
pressure transients are quickly reduced by friction, the main 
pressure transients of concern to the line operator are those 
arising from the packing and unpacking of gas in the pipeline. 
There have been several experimental studies on these slower 
transients, although, since they occur due to fluctuations in 
demand, it is more common to examine them using pipe 
networks. 

Single pipelines are more frequently used to model rapid 
transients such as those caused by a linebreak or a rapid valve 
closure. In the first major series of experiments 25 five pipelines of 
various lengths, diameters and topography were examined. 
Flow and pressure variations were imposed at the outlet of each 
pipe and the flow and pressure were recorded at both ends of the 
pipe. Good agreement was found between theoretical and 
measured input flows and pressures for both rapid and slower 
transient conditions. 

In the late 1960s, Stoner 46 determined the wavespeed of the 
compression wave caused by a rapid downstream valve closure 
in a 0.31 m diameter gas pipe. He then recorded the upstream 
and downstream pressure histories of the pipe when the valves 
at both ends of the pipe were simultaneously rapidly closed. 
Meanwhile, in France, Sens et al 57 were investigating the effects 
of rapidly opening a downstream valve to simulate an accidental 
pipeline break. It was found that at a distance of 6 km from the 
venting point the rapid opening of the discharge valve had the 
same effect as rupturing a bursting disc. 

Rachford and Dupont 32 used a 0.59 m diameter, 53 km long, 
2-leg gas pipeline and imposed sudden flow variations at the 
inlet end, slower variations at the outlet, and then compared the 
calculated and observed pressure histories. 

Using a four-leg, 78km long refinery gas transmission 
pipeline, Weimann 5s imposed transient supply and demand 
flows and compared the measured pressure variations with 
those predicted from his isothermal analysis. Although the 
changes in flow rate each took place within one minute, the 
resulting effect was the gradual packing and unpacking of the 
pipeline. 

Recently (1983), Mekebel and Loraud 59 investigated 
unsteady flows and pressures in a 0.22 m diameter, 19.345 km 
long gas transmission pipeline operating at pressures below 
20 bar. They concluded that heat transfer was a necessary 
inclusion in the theoretical analysis, This contradicts the 
common assumptions of isothermal or adiabatic flow. 

In the Netherlands, experimental data from the Gasunie 
transport system was used 2 to validate a theoretical model. In 
the first of two experiments a linebreak was simulated by rapidly 
opening a valve which connected the test pipe to a parallel pipe 
at lower pressure. The point on the test pipe at which the 

measurements were taken was l0 km downstream of this valve. 
The second experiment involved rapidly opening a gate valve 
situated between two measuring points on a test pipe. The pipe 
was 90 km long with a diameter of 0.76 m. Gas was supplied at 
both ends of the pipe and delivered to a number of take-off 
points along the pipe. The results showed that a fast pressure 
transient occured at both measuring points due to the valve 
opening. 

Pipe network experiments 

Since variations in supply and demand in gas transmission 
networks produce slow pressure transients, many line operators 
are more interested in the analysis of these slower transients. 

In one 7-hour test 24 on a section of a high pressure grid, flow 
rates and pressures were monitored at each take-off point and 
tee at 5-minute intervals following the isolation of the supply. 
Although the test was limited by having only one sudden flow 
change, the results obtained agreed well with those predicted 
from an isothermal analysis. It was realized, however, that just 
one inaccurate reading could affect the pressures predicted 
throughout the network, so extreme care had to be taken when 
recording the flow measurements. 

Rachford and Dupont a2 compared predictions from their 
isothermal analysis with experimental data recorded over ten 
hours for slow transients in a complicated looped network. They 
obtained quite accurate pressure history predictions for various 
points around the network. 

Weimann ha used a branched network as well as the single 4- 
leg pipeline described above to validate his isothermal model 
predicting the packing and unpacking of the gas. He recorded 
supply and demand flows at 1-hour intervals and took pressure 
readings at 15-minute intervals for a 24-hour period. 

Some experiments have been carried out using steam as the 
working fluid. These were conducted to support simulations for 
boiler steam lines and reactor blow-down. 

Ying and Shah 6° investigated steam hammer in the main 
piping system of an oil-fired power plant. They imposed 
transient conditions in the network by rapidly closing the 
turbine stop valves and then obtained oscilloscope traces of the 
pressure surges created. 

Banerjee and Hancox 28 conducted a series of blow-down 
experiments on a figure-of-eight loop containing pumps, heaters 
and heat exchangers. The blow-down was started by rapidly 
opening a quick-acting valve. Pressure, temperatures, coolant 
densities and flow rates were recorded at various points around 
the circuit, and the results obtained were compared with those 
predicted from the computer code of Arrison et a161. 

C o n c l u d i n g  r e m a r k s  

In reviewing the work of many authors it is evident that the basic 
equation set selected to describe a given unsteady flow process, 
and the numerical techniques adopted to yield solutions of 
practical use, usually involve compromises, eg accuracy may be 
traded off against computer memory space and speed of 
computation, etc. General recommendations may be 
summarized as follows. 

(i) Slow transient (time scale in hours) or rapid transients (time 
scale in seconds)? If the analysis is solely concerned with slow 
transients, such as those caused by fluctuations in demand in a 
network, then considerable savings in computational time and 
hence cost will be made by utilizing an implicit finite difference 
scheme which does not require a small time step for stability. 
However, if rapid transients are being considered, such as those 
caused by a linebreak or compressor failure, the implicit finite 
difference methods produce unsatisfactory results. In this case, a 
small time step is required, and the method of characteristics is 
recommended. 
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(ii) Degree of  accuracy? Higher degrees of accuracy can usually 
be achieved at the expense of increased computational  labour. 
In general, the implicit finite difference schemes are more 
economical than the explicit finite difference schemes or the 
method of characteristics, although the latter can achieve more 
accurate results. When using the mesh method of 
characteristics, errors can be introduced if the characteristics are 
approximated to straight lines. These discretization errors can, 
however, be reduced by employing arcs of parabolas in place of 
the straight lines to give a second-order approximation. 

(iii) Methods of solution that will not accommodate a varying 
wavespeed should not be used for nonisothermal flows. If shock 
waves develop in the system, a method must be chosen that will 
accurately represent the shock waves without smearing the 
details or overshooting. The Lax-Wendroff  two-step explicit 
finite difference method is the most suitable for dealing with 
systems in which a shock wave forms. The natural method of 
characteristics is also accurate but requires special procedures 
for the shock calculations. The mesh method of characteristics 
or an extension of this method such as the flux difference 
splitting scheme 4° both recognizes shocks and cause only small 
overshoot.  However,  the finite difference methods tend to 
produce overshoot in the presence of shocks if methods of higher 
than first order are used, and the discontinuities tend to get 
rounded off due to numerical diffusion. 

(iv) Size o f  system effect of  boundary conditions. Implicit finite 
difference methods are more suited to the analysis of large 
systems, although programs based on implicit methods do not 
allow easy extension. The mesh method of characteristics and 
the explicit finite difference approaches are comparatively slow 
and are more suited to single pipelines than to networks, 
However,  the mesh method of characteristics does have the 
advantage that the boundary conditions are properly posed, 
whereas for most of the other methods of solution care is 
needed--some implicit methods have been known to produce 
erratic results during the imposition of some types of boundary 
condition. 

(v) For  virtually all situations of unsteady flow, and especially 
those involving rapid transients, there is ample scope to add to 
the pool of experimental data. This can be extremely costly to 
produce, but is nevertheless required to help validate computer  
codes. Measurements that lead to a better understanding of heat 
transfer and frictional effects for rapid transients are particularly 
scarce. 
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Appendix: Derivation of the basic partial 
differential equations, with pressure, 
temperature and velocity as the dependent 
variables 

The basic equat ions  derived from first principles are 

Op Op~ Ou 

/Ou Ou\ OP W 

 'tTr+u ) + "  " Ox A 
gs inO 

['Oh Oh'\ ['OP O P ' ~  W u + n  

To ob ta in  p in t e rms  of P, z and  T 

F r o m  the equa t ion  of state, 

P 
p =  

R T z  

Therefore 

In p = l n  P - l n  R - l n  T - l n z  

and,  differentiating with respect to time, 

1 0p 1 0P 1 0R 1 0T 10z 

p 0t P 0t R 0t T 0t z 0 t  

But the compressibil i ty factor z = z(T, P); therefore 

/ Oz \ / Oz \ 

dz / O z \  dP { O z \  d T  

,0p }l l(0z ;d, II0zX dT 

Subst i tut ing this into  Eq (1): 

1 l ( O z \  ) d P  f l  l / 0 z \  ) d T  0u 

To obtain h in terms of P, z and T 

F r o m  Zemansky3:  

dh d T + ~ T ( ~ p ~  + } , d P  
~ - = C p ~ -  ( p \ ~ / p  1 P dt  

(1) 

(2) 

(3) 

(A1) 
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Substituting this into Eq (3): 

_ dT ( T / a p \ ) d P  f~+Wu (A2) 

Solving for dP/dt by eliminating d T/dt between (A l) and (A2) 
yields 

F1 l ( 3 z \  l d P  

r l  l ( 3 z \  ] T ( t 3 p \  dP 
' "  

Ou F1 l / a z \  - ]Q+Wu (A3) 

From the equation of state: 

lnp=ln P-In  R-In  T - l n z  

Differentiating the logarithmic form of the equation of state with 
respect to temperature T, keeping pressure P constant: 

T ( d z \  ) 

and substituting this into Eq (A3) gives 

3u [-I 1 ( @ \  1Q+Wu 
:,- 

Divide through by C~: 

- - - -  - - ~  l + - -  OT - -  

Ou 1 [ T ( ~z \ l f~ + Wu 

then solve Eqs (A1) and (A2) for dT/dt: 

[-1 l ( 3 z \  ] d T  

F1 1 ( @ \  4 T f O p \  dT 

[-1 l/t~z5 -]f~+Wu T['8p~ Ou 

Dividing through by C~ and substituting for 1/p (dp/c~T)p as 
before gives: 

1 [1 P¢Oz~ Ifl+Wu 
=pC,,L -Tka-P/d A 

1 F T f a z \  qau (A5) 

Assume entropy s is a function of pressure and density, 
s = s(P, p), then 

l o s \  / t3s \ 

If the entropy is constant then 

/ a s \  / a P \  / a s \  

. -  

Assuming temperature T is a function of pressure and density, 
T= T(P, p), then 

c~T " OT 1 

Therefore 

cSp c~s " Os 1 

( ~ p ) s = [ ( ~ ) p / ( ~ ) o ] ( ~ p ) T  (A6) 

But from Zemansky 3 (p 288): 

~ / , , =T  
and 

= ¥=  ¥ -  \~T),,,,Tf),, 
Also, 

Therefore 

<, l ) 1 ~ p  T p2 e, ~ T  

and 

~/p\~-P/T = T \ V / r -  O 2 \OTJp 

But it has already been proved that 

And, from the equation of state, 

z \aP/T]  

Substituting these identities into Eq (A6) gives 

f fp-p/s=T[T (PI z \aP/TJ 
C ~ I 1  T / @ \ 1 2 ) 7 - '  

+7k~),,] ~J 
p P Oz P =E~ 1 - z ( ~ ) ~ - ~ [  1 T/~z\ +7~LJ U l~l- '  

where (OP/ap)~/2 can be defined as the Isentropic Wave Speed a s. 
Substituting this into Eqs (A4) and (A5): 

1 dP Ou 1 V T / 3 z ~  ]f~+Wu 

1 dT 1 [ Tfaz '~  -]c~u 
02 ~ +u .Ll+? l~)pJ~  

- -?\~hJ T4 
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Finally, rearranging and including Eq (2) gives 

aP OP 2 Ou a~-+~ ~+p~= 

a~ [1 T ( a z \  ]Q+Wu 

t3u t~u 1 OP W 
~ + U ~ x q p  ~x pA gs in0  

(4) 

(5) 

BT BT a2 V T [ dz'~ -] ~u 

(6) 

Book review 

Convection Heat Transfer 
A. Bejan 
This text is one of three relatively recently published textbooks 
dealing with the subject of convection heat transfer. As with the 
other texts, the book starts by presenting the fundamental laws 
of conservation of mass, momentum and energy as well as the 
second law of thermodynamics. Rather than utilizing a 
generalized control volume and Reynold's transport theorem, 
the laws are developed from examining a differential control 
volume in cartesian coordinates. While this leads to easier 
understanding of the concept by the student, a clear 
understanding of the stress tensors is lacking and the students 
may have difficulty in their form in other coordinate 
systems. 

After the first chapter, the text progresses from specialized 
laminar boundary layer problems to laminar duct flows, natural 
convection and natural convection in enclosures. The 
development of laminar boundary layer heat transfer problems 
in Chapter 2 starts with a general discussion from a physical 
viewpoint and progresses to integral solutions and then 
similarity solutions. Practically nothing is presented except for 
the flat plate solutions, thus the instructor or student will be left 
to develop the extension to more practical conditions. There are 
no developments which account for wall suction or blowing on 
logical e×tensions to multiphase flows such as film boiling or 
condensation and so the second chapter is weak in its 
presentations. 

Chapter 3 on laminar duct flow problems introduces first the 
hydrodynamic entrance length problem prior to going on to 
fully developed flows. The integral solution between two parallel 
plates due to Sparrow is discussed but not the more accurate 
techniques due to L. S. Han or Langhaar. In discussing the heat 
transfer in ducts, the author starts from the fully developed flow, 
fully developed temperature profile cases as per Kays and 
Crawford instead of developing the solutions from the Graetz 
type problems from where it could be seen that the fully 
developed solutions come either from the particular solutions or 
lowest eigenvalues for the case of constant wall temperature of 
these more general solutions. The thermally developing 
solutions are also lightly treated and variable thermal properties 
are totally ignored. 

Chapter 4 deals with natural convection and again some 
classical solutions for a vertical flat plate are introduced, but 
here discussion of problem formulation for both integral and 
similarity solutions are more complete. The author makes a 

false statement concerning lack of understanding of length 
scales in contemporary research. Such scales have been clearly 
pointed out by S. Ostrach and B. Gebhart among others. Both 
high and low Prandtl number solutions for constant wall 
temperature and constant heat flux are presented. The author 
also discusses the effects of thermally stratified flows, but 
erroneously reports the lack of a similarity solution. The 
existence of such a solution was recently reported by Kulkarni, 
Jacobs and Hwang, International Journal of Heat and Mass 
Transfer (1986). Other topics covered include conjugate 
problems, vertical channel flow and combined natural and 
forced convection and surprisingly a two-phase problem, 
gravity driven film condensation, which was lacking in Chapter 
2. The latter was only weakly represented by the early 
pioneering work of Nusselt (1916). The excellent pioneering 
work of Andrea Acrivos on combined free and forced 
convection was ignored. 

Chapter 5 is a relatively complete treatment of laminar 
natural convection in closed cells. Some forty pages long, this 
chapter is an obvious favourite subject of the author who 
frequently references his own work. 

Chapter 6 deals with transition to turbulence and is a good 
treatment of a topic totally disregarded in most texts. The 
author is, thus, to be congratulated for its inclusion. 

Chapter 7 and 8 on turbulence are reasonably well presented 
for both forced and free convection. However, the roughly 80 
pages seems quite short to treat all aspects of this most 
important topic of convection heat transfer in a text where two 
chapters and 73 pages are devoted to flow and heat transfer in 
porous media! 

Despite this book's obvious shortcomings as a textbook in 
convection heat transfer, it should provide a useful reference 
source. This is particularly true in the areas of porous media 
heat transfer which is an area of increasing interest and 
broadening application. 

Harold R. Jacobs 
Pennsylvania State U n iversity, 

USA 

Published price £43.20 by John Wiley, Ballins Lane, Chichester, 
W. Sussex POI9 IUD, UK, 494 pp. 
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